

International Conference on Non-Electric Applications of nuclear Power April 16-19, 2007 Oarai, Japan

Sensitive Ecnomic Analysis of Nuclear Desalination by Using DEEP IAEA-CN-152-4

Danrong SONG Xiaoting Ding

National Key Lab. of Reactor System Design Technology Nuclear Power Institute of China

2007-6-12

Introduction

Nowadays only 1/2000 of overall fresh water resource can be used in the world, 1.1 billion people in the world are short of safety drinkable water, so the supply of freshwater is one of the major problems facing to the world in 21st century. The desalination of sea water is a very important way to find new fresh water resource and sea water is inexhaustible.

Evaluation method and software

In order to promote nuclear technology in electricity production or portable water production, The IAEA has developed its economic evaluation model and established the Desalination Economic Evaluation Program (DEEP) by using levelized discounted costs method.

Assumption and data Prepartion

Overview of nuclear seawater desalination plant Nuclear seawater desalination plant consists of a seawater desalination pool shell type reactor (abbreviation SDPSR) and sevseal low temperature multi effect distilling facilities and their correlated systems.

Overview of nuclear seawater desalination plant SDPSR is a low temperature, normal pressure (atmosphere pressure at the surface of the pool) nuclear reactor which uses the same fuel as that of commercial nuclear power plant. This kind of reactor operates under low temperature and normal pressure.

Figure.1 Principal layout of the nuclear heat supply

Main characteristic of the reactor vessel can be found as following: design pressure 0.6MPa, design temperature 150° C, internal diameter Φ 3370mm, total height 12100mm, maximum diameter 3916mm, total weightiness 55ton,

Figure.3 Plate-fin heat exchanger

Research area suggestion and different scenarios assumption

Table 1 Input data for water cost calculation

Region Sea water temperature °C		1 20	2 25	3 30
Person cost (\$/year)	Managem ent	160000	60000	60000
	Labour	80000	30000	30000
Discount rate (%)	Sn	5	8	8
	Sf	8	10	10
	Sea water t TDS Person cost (\$/year) Discount rate	Sea water Emperature CTDS(ppm)Person cost (\$/year)Managem ent entDiscount rateSn	Sea water temperature C20TDS(ppm)38000Person cost (\$/year)Managem ent160000Labour80000Discount rateSn5Sf8	Sea water temperature C 20 25 TDS (ppm) 38000 41000 Person cost (\$/year) Managem ent 160000 60000 Labour 80000 30000 Discount rate Sf 8 10

10

Table 2 Input data for water cost calculation

IAEAs Desalination Economic Evaluation Programme DEEP Version 3.04 - July 2005

Average annual cooling water temperature	°C	Tsw	20 to 30
			2010 00
Seawater total dissolved solids (TDS)	ppm	TDS	38 to 45
Electric motor efficiency		Eem	0.96
Temperature difference for heat transfer	°C	DTh	34
Outlet temperature of gas turbine	°C	Togt	NA
Factor auxiliary load		Fal	NA
Turbine mechanical efficiency		Etm	NA
Generator efficiency		Eg	NA

Caculation result

The economic comparison of fresh water production by SDPSR, other kind of nuclear reactors and fossil plant (Sn and Sf are the same meaning and value in table 1) in different regions are shown in Diagram 1, 2 and 3 respectively.

Conclusion

From the comparison and analyses above, we can conclude:

Discount rate is a very sensitive factor to water price;

TDS is not a very sensitive factor to water price;

Person cost is almost no affect to water price;

Conclusion

SDPSR is competitive with other nuclear technology and fossil plant in water production in Region 1 and Region 2;

In Region 1, SDPSR is competitive with fossil plant and in water production.

